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We consider thin films deposited on a transparent substrate and heated by the 
absorption of optical radiation. We derive relations which are convenient for 
comparing calculated and experimental data. 

By using optical radiation to process thin films, a number of new technological problems 
have been solved, and interest in the study of this problem has been increased. Processes oc- 
curring in the action of radiation on thin films have been considered in a number of papers 
[1-6], in which the heat-conduction problems which arise were solved by using Hankel and La- 
place transforms and, as a rule, assuming that the thermophysical and optical parameters are 
independent of temperature. The solutions obtained in this way contain cumbersome integrals 
and are not very simple when inverted, which makes them inconvenient to compare with experi- 
ments [7]. In the present article the heating of thin films by optical radiation is studied 
by an integral method [8], which not only simplifies the solution of the problem, but also 
permits taking account of the temperature dependence of the thermophysica! properties of the 
film and substrate. 

We consider a boundary value heat-conduction problem in the one-dimensional approxima- 
tion, valid for ro>> ~, where ro is the size of the radiation spot. We assume there is 
ideal thermal contact between film and substrate, and that the substrate is transparent to 
the radiation. The system of equations and boundary conditions determining the temperature 
distribution in the film and substrate has the form 

OTi 0 (ki OTi '] 
p j c i  Ot - Or. ~ / +  ~oi (x, t), 

( or ) OT= 0 & + o~., (x, t), 
p2c~ 0 ~ - -  Ox Ox / " 

OTi k~, 0~__ (h, t), k, - y x -  (< 0 = 

r~ (h, t) = T,~ (h, t), 

OT, (0, t)-=-O, T2 (oo, t)----T i , 
Ox 

T i(x, O)=T 2(x, O)=T i, 

(1) 

Subscripts !, 2 refer to the film and substrate, respectively, and the coordinate x is mea- 
sured from the front surface of the film. We set T~,a = T~,2 -- T i everywhere, and omit primes 

h 

for brevity. Since the substrate is transparent, we have for the sources a#x=Aq(O,  O ~  : - -  

0 

0, A = 1 -- R -- D. 

We solve system (i) by the integral heat-balance method [8], which enables us to reduce 
the heat-conduction problem to that of solving an ordinary differential equation. We first 
integrate the equation in the film with respect to x from 0 to h 
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" OT~ dx -- k, OTI (h, t) -]-. Act (t). (2) 
p~c~ at " ax 

0 

Neglecting, for simplicity, the temperature dependence of the thermophysical parameters of the 
film and substrate, and assuming h < ar i.e., that the film is uniformly heated during the 
whole radiation pulse, we reduce problem (i) to the determination of the temperature distri- 
bution in the substrate: 

OT O2T 
pec,a -- = k, 2 -  , 

Ot Og ~ 

dTo (3) 
--k,, ~fgaT (0, l) = Aq ( t ) - -  p~cth dt 

T(V, o)= r(o~, t)=O, v = x - h .  

Here we have everywhere omitted the subscript 2 on the temperature T; To = T(0, t) is the 
film temperature, which is equal to the temperature of the substrate at the interface. We 
note that the condition h < ar when the temperature can be taken constant over the thick- 
hess of the film and equal to the value at the substrate boundary, is usually satisfied for 
metallic films of thickness h ~ 10 -5 cm for ~ > 10 -9 sec. We now introduce the depth of heat- 

ing of the substrate 6(t) in the standard way [8], make the substitution T(y, t) = To~(~), 

and integrate Eq. (3) with respect to y = ~6 from 0 to 6 to obtain the system 

d(6To) k~OTo 
p 2 c 2 B - - - -  

dt 6 

dTo koGTo (4) p t c i h - - =  " ~Aq(t ) ,  
dt 6 

1 
e d~ 

B = ~  J ~d~, G =  d~ (0). 
0 

We a s s u m e  t h e  a b s o r b i n g  p o w e r  o f  t h e  f i l m  v a r i e s  l i n e a r l y  w i t h  t h e  t e m p e r a t u r e  A = Ao + 
AIT, Ao, AI = const, and consider two cases: Ao > AIT, Ao < AIT. 

Let A = Ao. The first integral of system (4) can be written in the form 

Ao?E (t) T. 

picih(1 ~-y) 1 -F y-i"  ' 

t ~  
S o , q h  

E (t) = qdt, "~ -- P2c2 8B 
0 

(5) 

Equation (5) expresses the law of conservation of energy, and the parameter y is the ratio of 
the volumetric heat capacities of the film and heated layer of substrate, and determines the 
rate of heating of the film. For the depth of heating of the substrate we obtain from (4) 

k~GTo 
8 (t) = dTo ' 

p ~ c ~ h - -  --Aoq(t) (6) 
dt 

and the problem of determining To is reduced to the integration of Abel's equation of the sec- 

ond kind: 

Z dZ = ~ ( Z + T . )  2, (7 )  
dt 

where 

Z =  T o - - T a ;  a 
k~p2c2B6 
(picih)  2 
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Fig. i. Dependence of reduced tem- 

perature Tre = To/Aoqo (K.m2/W) of 
a copper film of thickness h = 1 ~m 

on reduced time tre = tal/h 2 
Dashed lines represent the limiting 

o.s. 2) cases (y $ I): i) Tre ~ tre , 

Tre ~ tre. 

An important aspect of the application of the integral method to thermal problems is the 
choice of the function ~(~). Generally, in problems with surface heat sources the temperature 
profile is well approximated by power functions of the form ~ = (i -- ~)m with m > 1 [8, 9]. 
For this class of profiles we have B = (i + m) -I and G = -m, and hence �89 < IBG] < i. 

In the limiting cases y ~ 1 it is not necessary to integrate (7), since the solution carl 
be found from Eqs. (5) and (6). For y>> 1 heat transfer into the substrate is small, the con- 
tact of the film with the substrate can be considered adiabatic, and the heating of the film 
is determined by its volumetric heat capacity: 

AoE (0 
To Ta -- (8) 

9icj~ 

I f  y<< 1, t he  r a t e  o f  h e a t i n g  o f  the  f i l m  i s  d e t e r m i n e d  ma in ly  by the  amount of  h e a t  a c -  
cumula t ed  in  the  s u b s t r a t e ,  and we w r i t e  Eqs. (5) and (6) in  the  form 

9 ~  
T~ -- m + l  A~q ~t) E (l) (9) 

n~ k29~c2 

For a constant radiation flux density q = qo = const, Eq. (9) gives To = Ta/~/~, and by 
comparing this with a similar solution in [i], we find the exponent m = ~/(4 -- 7). We note 
that solution (9) is valid also for a strongly absorbing substrate (D = 0), and in this case 
corresponds to pure surface heating of the material by the energy flux. 

Thus, for short radiation pulses the film can be considered thermally insulated from the 
substrate, and approximation (8) is used, whereas Eq. (9) applies for long pulses when steady 
heat transfer into the substrate is established. In intermediate cases the solution is readi- 
ly found by integrating Eq. (7) numerically, e.g., by the Runge--Kutta method. 

Figure 1 shews the solution of Eq. (7) for the irradiation of copper films of thickness 
h = 1 ~m by radiation of constant intensity. For 10 -6 ~ T ~ 10 -3 sec the solution is deter- 
mined directly by integrating Eq. (7), which in general cannot be reduced to quadratures. We 
note that the film temperature can be considered uniform over the thickness after a time of 
the order t ~ 10ha/al ~ i0 -7 sec. 

We now let A = AITo and limit ourselves to the case q = qo = const. Clearly~ the in- 
crease in absorbing power of the film with increasing temperature must lead to an accelera- 
tion of the heating rate. For adiabatic heating of the film we obtain from Eqs. (4) 

( A~qot t To T~ exp \ ~ /  , (10) 
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and for y<< i we have 

To=Tiexp ( A~ qot ) 
k2p~c~_ (ll) 

These formulas agree with the corresponding limits derived in [I0]. 

In intermediate cases (~ ~ i) the solution is found by solving the system of ordinary 
differential equations (4) for the derivatives and integrating by standard methods. 

From Eqs. (8)-(11) it is easy to estimate the threshold densities of radiant energy for 
which the film is destroyed. If the adhesion of the film to the substrate is sufficient to 
maintain the liquid phase on the substrate, the film is destroyed mainly by evaporation. For 
poor adhestion the molten film may slide under the action of surface tension forces [i]. De- 
struction of the film by evaporation involves the largest expenditure of energy, and melting 
involves the smallest. In practice, the theshold value of the energy to destroy the film may 
take any value in the range Emi n ~< E <~ Emax, which will be determined by the ratio of the con- 
tributions of the evaporation and sliding mechanisms. 

In conclusion, we note that in solving problem (i) by the integral method, the tempera- 
ture dependence of the thermophysical properties of the film and substrate can be taken into 
account. To do this it is necessary to make the substitution 

TI ,2 

01,2 = ~ Pl,= (T) ci,2(T) dT 
o 

in the  i n i t i a l  equa t i ons .  As a r e s u l t  T l , a  in  the  above equa t ions  i s  r ep l aced  by 01,2.  The 
To 

film temperature To is now determined from the equation Oo----~P~c2dT. 
0 

NOTATION 

T, temperature; x, Cartesian coordinate; t, time; h, film thickness; T, duration of ra- 
diation pulse; q(t), radiation flux density; c, specific heat; p, density of material; k, 
thermal conductivity of medium; a, thermal diffusivity; A, absorptivity of film; R, reflec- 
tion coefficient of film; D, transmission of film; 6, heating depth; y, 5, new arguments; 9, 
auxiliary function; 7, dimensionless parameter; E, surface density of radiation energy; @, 
new variable (heat content). Subscripts: I, film; 2, substrate; i, initial; o, boundary; 
a, adiabatic; re, reduced. 
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